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I - RESEARCH SUMMARY

During the last year significant results have been obtained in a variety of

problems. Here we give a brief description of these results and, under separate

cover, we remit some preprints wherein details may be found.

FINITE ELEMENT METHODS FOR THE LADYZHENSKAYA MODEL OF VISCOUS FLOW -

The Navier-Stohes equations are the most commonly used mathematical model

describing the motion of viscous incompressible fluids. Although this model is

generally accepted and Is even thought by many to be valid for turbulent flows,

it does have some shortcomings. Of the latter, the most important one is that

it is not known and riot believed that solutions are globally, in time, unique.

Among the other models proposed for viscous incompressible flows is the one

of Ladyzhenskayn. Her model differs from the Navier-Stokes model only in the

Si.
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constitutive equation used. Whereas for the Navier-Stohes equations one uses a

linear constitutive model, Ladyzhenskaya introduces a nonlinear one. One

advantage of her model is that one can show, in both 2-D and 3-D, that

solutions are globally unique in time.

For the stationary case, the Ladyzhenskaya equations are given by

divu = 0

and

-div(IA(u)(gradu + (gradu) T)) + u-gradu + gradp = f

on some domain ( and where u is the velocity, p the pressure, f the given body

force and

A(v) = Y 1 IVI
p -2 , p > 2

The Navier-Stokes model corresponds to Y,=O (or p=2). Ladyzhenskaya herself

hias shown that these equations, with suitable boundary conditions, always have

a solution. She did not explore the uniqueness question with respect to the

stationary equations. It is well known that one can show that the Navier-

Stokes equations have a unique solution whenever

Ni'fY _ /ro  1

where N is a constant such that

f w-graduv NW u v. 1  w for all u,v,wH1iQ).
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For the Ladyzhenskaya equations we have obtained an improved uniqueness

condition in the sense that her equations can be shown to have a unique

solution for "larger" values of the data f.

We have also studied the finite element approximation of the Ladyzhenskaya

model. We have shown that one may use the same finite element spaces for the

velocity and pressure as are used for Navier-Stokes calculations. Furthermore,

we have obtained error estimates for the finite element solution which are

identical, with respect to the rate of convergence, as those available for

*. finite element approximations of the Navier-Stokes equations.

At this time we are writing a code to implement some finite element methods

for the Ladvzhenskaya model. The main goals of these computations are to see

what effect her model has on actual solutions, as well as to study how one may

;mplement finite element methods and solution algorithms for that model. Once

the computations have been carried out, a paper will be written concerning both

the theoretical and computational results.

SURVEY OF FINITE ELEMENT METHODS FOR INCOMPRESfIBLE VISCOUS FLOWS

Over the past few years, mainly with support from AFOSR, we have been

involved in various aspects of research in finite element methods for

incompressible viscous flows. As a result of an invitation to give a survey

lecture on this subject at a Finite Element Workshop held at ICASE, we prepared

a survey paper. This paper collects many important algorithmic and mathematical

results obtained by us, our colleagies, and the finite element community as a

whole. A copy of this paper is enclosed and vill appear in a Workshop

Proceedings which is to be published by Springer.
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We feel that this paper is riot of sufficient length to adequatedly cover

the many aspects of the subject considered. Therefore we are presently

rewriting and expanding the paper so that it will result in a valuable survey

of algorithms and the analysis of algorithms for the Navier-Stokes equations.

Our aim is to have it published by MAN{ R iew, or, if its length and scope

warrant it, as a book, perhaps in a SIAM or Springer series.

FINITE ELENENT IIETHODS FOR HYPERBOLIC EQUATIONS

We have studied various finite element methods for first order hyperbolic

systems of differential equations. First we consider equtions of the positive

svmetric type, i.e., of the Friedrichs type. Such equations arise in most

applications, e.g., fluid mechanics and electromagnetics. Standard finite

element methods for these type equations are not optimally accurate in the

sense that the error in the finite element approximation does not converge at

the same rate as the error in the best approximation to the solution of the

differential equation in the finite element spaces employed. We study a

nonstandard finite element method which yields optimal accuarcy in the H' norm

and, for sufficiently regular solutions, in the L2 norm as well. The method may

be viewed as a combined Galerkin and least squares method.

If we denote the hyperbolic system by

L(u) - 0

for sor,.e unknown function u, the method is based on the weak formulation



(L(u) , v + 6L 0 (v ) =0

where L0(.) is operator related to the principal part of L(.), 6 is a

parameter related to the grid size, and the test functions v can be chosen in

the same space in which the solution u is sought. We show that with the proper

choice of the parameter 6 that the optimal estimates mentioned above are

obtained.

Another aspect of this research is based on our work and those of others on

first order elliptic systems of differential equations. These methods do not

,. apply to general hyperbolic systems, but fortunately are useful in many

applications, e.g., again, fluid mechanics and electromagnetics. Using the work

on elliptic differential equations, a suitable projection, onto the finite

*element space, of the solution of the hyperbolic system is defined, and the

error in this projection estimated. This projection is then used to obtain

analagous estimates for the error in the finite element approximation of the

solution of the hyperbolic equations.

WORK OF WILL141 LAYTON SUPPORTED IN PART BY THE GRANT

During the past year the Grant has provided partial support for Professor

William Layton of the Georgia Institute of Technology during his visit to

Carnegie-Mellon University. We now give a brief account of some of his work

which was partially supported by the grant.

One subject of interest to Layton is the Approximation of singularly

perturbed problems. ror example he has studied nonstandard defect correction

methods applied to convection-diffusion problems with dominant convection



terms. It is shown that these methods converge uniformly in the viscosity

parameter an with optimal rates, outside of boundary layers. Numerical codes

have been written implementing the method for i-D an 2-D problems. Another

aspect of this research is the approximation of the derivatives of the solution

of singularly perturbed two-point boundary problems. It is shown that outside

boundary layers certain difference quotients of a computed approximation to the

solution give optimal approximations to the derivative of the solution,

uniformly in the viscosity parameter. By looking at stretched variables, an

accurate formula for approximating the derivative within the boundary layer is

also provided.

Another research project was concerned with the approximation of solutions

of second order elliptic differential equations. For example, it is shown that

standard central difference discretizations of linear second order elliptic

equations without lower order terms are of monotone type, although riot

,iecessarily positive. Consequently, a maximum principle holds. Another aspect

of this research concerns itself with Galerkin approximations to the solution

of semilinear elliptic equtions of the type

Lu = f(u)

where L is a linear second order elliptic operator. Optimal error estimates are

obtairied whenever df/du is bounded inside the resolvent set of L.

."""
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II - PERSONNEL SUPPORTED BY THE GRANT

1. Hax Gunzburger, Professor of Mathematics; 3 summer months; Principal

investigator.

2. William Layton, Visiting Associate Professor; partial academic year support.

3. Qlang Du and Amnon heir, Graduate Students; summer support and partial

academic year support.

III - PLLICATIONS RELEVANT TO THE GRANT

1. Finite element approximations for first order elliptic systems in three

dimensions; preprint enclosed; (C. Chang and M. Gunzburger).

2. Finite element methods for the Ladyzhenskaya model of incompressible viscous

flows; in preparation; (Q. Du and M. Gunzburger).

3. Nonstandard finite element methods for hyperbolic systems; in preparation;

(Q. Du, M. Curizburger and W. Layton).

4. Mathematical aspects of finite element methods for incompressible viscous

flow problems; to appear in the Proceedings of the ICASE Workshop on Finite

Element MK.thod-s, to be published by Springer; (H. Gunzburger). Preprint

encl osed.
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S. A study of defect-correction, finite difference methods for convection

diffusion equations; preprint enclosed; (V. Ervin and W. Layton).

6. On the approximation of the derivatives of singularly perturbed boundary

value problems; preprint enclosed; (V. Ervin and W. Layton).

7. On central difference approximations to general second order elliptic

equations; preprint enclosed; (W. Layton).

8. L2-estimates for Galerkin methods for semilinear elliptic equations;

preprint enclosed; (E. Harrell and W. Layton).

9. A ouide to finite element methods for incompressible viscous flows; in

preparation; and expanded version of 3 which will be submitted as a revies

article to a major journal or be published as monograph; (M. Gunzburger).
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